Proposed Class 1a (two storey) dwelling
2 Example Street, TASMANIA

Site Information

Land Title Reference	0000/00	(Certificate volume and folio)
Wind Classification	N3	Site classification to AS 4055-2006 (Reference report author)
Soil Classification	H	Site classification to AS 2870-2011 (Reference report author)
Climate Zone	7	(www.abcb.gov.au map)
BAL Level	19	As determined by registered Bushfire Assessor (Reference report author)
Alpine or Sub-alpine Area	N/A	<300m AHD (BCA Figure 3.7.5.2)
Corrosion Environment	MODERATE	For steel subject to the influence of salt water, breaking surf or heavy industrial areas, refer to BCA section 3.4.2.2 & BCA Table 3.4.4.2. Cladding and fixings to manufacturer’s recommendations
Other Hazards	N/A	High wind, earthquake, flooding, landslip, dispersive soils, sand dunes, mine subsidence, landfill, snow & ice or other relevant factors

Area Schedule

- Site Area: 2,012m²
- Ground Floor Area: 103m² (Excludes deck)
- First Floor Area: 185m²
- Total Floor Area: 288m²
- Deck Area: 23m²
- Patio Area: 44m²

Other required documents
(Not supplied with this set)
- Site Classification Report / Assessment
- Wastewater Assessment
- Bushfire Hazard Management Report
- Bushfire Hazard Management Plan
- Energy Assessment

Accredited Practitioner:
Name
Address
Phone number

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example
2 Example Street, TASMANIA

Drawing Title:
Cover Page

Date: 2/11/2016
Status: INFORMATION
Scale @ A3: NTS @ A3
Drawing No.: A01 (1 of 25)
FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

INFORMATION

Site Plan

- **Scale:** 1:200
- **Site area:** 2,012m²

SOIL & WATER MANAGEMENT STRATEGIES

- Downpipes to be connected into water tank as soon as the roof is installed.
- Install AG drain prior to footing excavation. See drawing A10 Ground Floor Drainage Plan for location.
- Excavated material placed up-slope of AG drain. To be removed when building works are complete and used as fill on site for any low points. Install a sediment fence on the downslope side of material.
- Construction vehicles to be parked on the street or the driveway once concreted, to prevent transferring debris onto Example Street.

Protection Work

(Section 121 of the Building Act)

- If excavation is to a level below that of the adjoining owner’s footings, along the title boundary or within 3 metres of a building belonging to an adjoining owner, the builder must (as a minimum) provide and maintain a guard to supervise the excavation. Adjoining owner to be notified using Form 6 (Building and Protection Work Notice) by the Building Surveyor.

LEGEND & NOTES

- **Existing levels**
- **New levels**
- **RL** Reduced Level
- **Contour interval** = 0.5 metre

Site Plan Scale: 1:200

- **Site area:** 2,012m²

Building line as per Building Act 2000 part 3.1. (In this case, 1.8m from the centre of a road that is not within a city or town)

Drawing Title: Site Plan

Owner / Client: Consumer Building & Occupational Services

Drawing No.: A02

Date: 2/11/2016

Status: INFORMATION
FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

LEGEND & NOTES
- 140th block wall as described on A16.
- 90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
- 90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
- New levels
 - C. Carpet with Airstep Stepmax foam underlay.
 - Cf. Ceramic floor tiles.
 - Conc. Concrete floor finish
 - Cj. Control joint, refer to drawing A16.
 - DP. Downpipe
 - MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

LEGEND & NOTES
- 140th block wall as described on A16.
- 90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
- 90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
- New levels
 - C. Carpet with Airstep Stepmax foam underlay.
 - Cf. Ceramic floor tiles.
 - Conc. Concrete floor finish
 - Cj. Control joint, refer to drawing A16.
 - DP. Downpipe
 - MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.

GROUND FLOOR PLAN
scale 1:100

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example 2
2 Example Street, TASMANIA

Date: 2/11/2016
Status: DRAWING NO.
A03

Accredited Practitioner:
Name
Address
Phone number

Tasmanian Government

Drawing Title: Ground Floor Plan
Scale @ A3: 1:100

INFORMATION

~ — Cut
- — 140th block
90th block as described on A16.
90th block veneer walls (140th where retaining as indicated). 60mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
New levels
C. Carpet with Airstep Stepmax foam underlay.
Cf. Ceramic floor tiles.
Conc. Concrete floor finish
Cj. Control joint, refer to drawing A16.
DP. Downpipe
MB. Meter box

General
Refer to drawing A19 for stair information.
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Drawing Title: First Floor Plan

First Floor Plan

scale 1:100

Floor area 185m²

- Hebel PowerPanel aerated concrete (refer to drawing A16) 75mm thick, rendered. 35mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
- Cantilever Design Series 16mm FC sheet cladding; Woodgrain Teak (Refer to drawing A17) 15mm cavity, 90mm stud wall, R2.5HD batts, plasterboard lining.
- 90mm stud walls with 10mm plasterboard lining throughout. (Wet area plasterboard to Bathroom, Ensuite and Laundry walls)
- New levels
- C. Carpet with Airstep Stepmax (or equivalent) foam underlay.
- Cft. Ceramic floor tiles.
- Conc. Concrete floor finish
- Tb. Timber flooring 85 x 19 tongue and groove Tasmanian Oak overly floor boards - Select grade (SEL)
- Two part epoxy finish.
- Td. Timber decking: 136 x 25 Spotted Gum
- CJ. Control joint (refer to Hebel documentation for instructions)
- DP. Downpipe
- MB. Meter box

General

Refer to drawing A19 for stair information.

Wood Heater & Hearth

- Selected heater must be installed as per manufacturer's instructions. Clearances to walls specified within the BCA may be reduced if the appliance has a built-in heat shield and manufacturer’s documentation can prove compliance with AS/NZS 2918. (Provide manufacturer's certification to Building Surveyor prior to appliance installation).
- Minimum 400mm clearance between triple skin flue and wall behind.
- If heater manufacturer permits, a proprietary tile / slate hearth overlay may be used. Alternatively hearth can be constructed as follows: 150mm high hearth, with tiled top and side. Height achieved by laying 9mm compressed sheet over sheet flooring, concrete blocks (or bricks), mortar bed and selected tiles.
- The hearth must extend a minimum of 400mm beyond the front and the sides of the heater.
New levels

Owner / Client: Consumer Building & Occupational Services

Date: 2/11/2016

Concrete slump: 80mm
Concrete strength: 25Mpa
Aggregate size: 20mm nominal
Finish: Steel trowel

All concrete shall be cured for 7 days. The Engineer’s approval of the proposed method of curing shall be obtained before pouring.

140 1,920

Scale 1:20

SLAB / FOOTING PLAN

DRAWING A05

Revised: 1:100, 1:20

For entry door

40D x 120W rebate to slab edge for sit down door frame.
Proprietary threshold strip.
Locally ramp up.
1/20 max fall away from building.
Subslip flashing recommended.

20mm sloping rebate for garage door.

40mm rebate at front door for level threshold.

50mm setback in slab for shower. Slab locally thickened to suit and reinforcing mesh stepped down to maintain 30 mm cover.

Drainage pipes to pass through middle third of footing (typical). Refer to wall section on drawing A16 for further information.

20mm thick concrete slab:
- SL82 top, 30mm cover.
- 0.2 mm Fortecon vapour barrier.
- 20mm bedded sand.
- 100mm deep 20mm FCR, compacted to a density of 95%.

5000 mass concrete bored pier to Eng. approved base, max. 3m centres. 1/1:16 central tied to footing. Nominally 1500mm deep.

100mm thick concrete slab:
- SL82 top, 30mm cover.
- 0.2 mm Fortecon vapour barrier.
- 20mm bedded sand.
- 100mm deep 20mm FCR, compacted to a density of 95%.

FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1.
The content should not be relied upon as accurate for another building project.

LEGEND & NOTES
- New levels
- SF1 Strip footing 1
- SF2 Strip footing 2
- TB1 Thickening beam 1
- TB2 Thickening beam 2
- RW2 Retaining wall 1
- RW3 Retaining wall 2
- RW4 Retaining wall 3

Founding depth: 2100mm
Founding material: Weathered fine dolerite
Footings shall be founded on approved material having a bearing capacity of 100kPa.

Concrete slump: 80mm
Concrete strength: 25Mpa
Aggregate size: 20mm nominal
Finish: Steel trowel

All concrete shall be cured for 7 days. The Engineer’s approval of the proposed method of curing shall be obtained before pouring.

140
FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

FLOOR FRAMING & BRACING PLAN
scale 1:100

This layout shows minimum bracing requirements.
Additional bracing may be installed during construction.
Refer to Roof Framing Plan for location of loadbearing walls above and requirement for double joists.

125 x 75 UA (150mm long) to top of C2's to support B3's.
160 double diagonal rod brace welding on site.
4.5mm cement sheet lining to underside of cantilevered joists.

150mm inline silent subfloor fan with 2 intake vents and 1 external vent to eliminate dead air spaces within subfloor. 150mm fire duct. Fan plugged into standard GPO, with 24hr timer. System capable of ventilating 120m².

50mm minimum clearance of 150mm from ground to underside of timber framing (typical).

400 x 400 blockwork piers on 400dia. mass concrete pads, bored to refusal. 1:N16 central tied to footing. Max. 1800H.

390W blockwork engaged piers @ 150mm max. centres.

Subfloor vents no further than 600mm from corners.
200H steps in RW2 footing height to comply with NCC 3.2.2.5.

Cut as shown, then backfill in 150mm compacted layers once retaining wall is built, to give stable base for blockwork piers and retaining wall footing.

Lintel Schedule
L1 90 x 45 F17
L2 140 x 45 F17
L3 190 x 45 F17
L4 240 x 45 F17

Galvanised Steel Lintels
600 - 1200mm 85 x 7 Flat
900 - 2100mm 100 x 100 x 10 Angle
2100 - 3000mm 150 x 100 x 10 Angle

Wall Framing:
Wall framing to be min. F17 16kN/d. dried hardwood.
Common studs 90 x 45 @ 450 crs
Studs around Wet Areas 90 x 45 @ 450 crs
Noggings 90 x 35
Open studs 90 x 35
Top & bottom plates 90 x 45

Specific Tiedowns
Bottom plate to slab:
Chemical, expansion or fired proprietary fasteners to manufacturer’s recommendations
OR 1:M10 bolt at 1200 crs max. generally

Top and bottom plates to studs:
30 x 0.8mm G.I. strap at 1200 max. crs
6/50 x 2.8mm Ø nails each end of strap

Lintels to studs:
1800mm span max.
30 x 0.8mm G.I. strap
4/30 x 2.8mm Ø nails each end
6000mm span max.
2/30 x 0.8mm G.I. straps
6/60 x 2.8mm Ø nails each end

Refer to AS1684.4

All nails used for framing anchors & straps shall be corrosion protected flat head connector nails. (Galvanised clouts can be used for this purpose)

Bracing
H(b) 1200
Ply bracing per AS1684 Table B.18b, giving 6kN/m.
1200 (1.2m indicated)

D(24-3): Double tensioned metal strap per Table B.18d, giving 3kN/m. (2.4m indicated)

Refer to bracing details on drawing A17 for further information. Bracing & tie downs are to comply with AS 1684.2 and the BCA.
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.
Roof Framing & Bracing Plan

Scale: 1:100

- **Wind direction and bracing calculations to be shown, unless drawings are provided or certified by a Structural Engineer.**

Windbearing walls
- Double joist below if wall is in same orientation. Where wall is perpendicular to joists, 75mm batten screw bottom plate every 2nd joist.
- Soffen top plate with intermediate vertical blocking between studs. Use 2/90 x 45 F17 with 3 nails at each joist.
- Refer to AS1684.2 for further requirements.

Loadbearing Walls
- Double stud Roof pitch: 22.5º
- Ceiling height: 2400mm
- Roof battens: typically 70 x 35 deep MGP12 @ 900 crs.
- All timber construction to be in accordance with AS 1684.2 (Residential Timber Framed Construction) and the BCA.

Specific Tiedowns
- **Bottom plate floor frame:** 2/90 x 3.05mm nails through bottom plates into each joist or at 600mm max. centres.
- **Top and bottom plates to studs:** 30 x 0.8mm G.I. strap at 1200 max. crs / 6/30 x 2.8mm Ø nails each end of strap.
- **Lintels to studs:** 1800mm span max. / 30 x 0.8mm G.I. strap / 4/30 x 2.8mm Ø nails each end / 6/30 x 2.8mm G.I. straps / 6/30 x 2.8mm Ø nails each end.
- **Roof trusses to top plates:** 30 x 0.8mm G.I. strap at each end / OR two framing anchors.
- **Roof battens to trusses:** Within 1200mm of any edge: 2/75 x 3.05mm Ø deformed shank nails / OR 75 long - No. 14 Type 17 screw / OR 1 framing anchor 4.2mm Ø nails each leg.
- **General area:** More than 1200mm of any edge 2/75 x 3.05mm Ø deformed shank nails at 900 crs each way.

Refer to AS1684.4

Bracing
- **H(b) Ply bracing per AS1684 Table 8.18d, giving 6kN/m.**
- **D(2.4) Double tensioned metal strap per Table 8.18d, giving 3kN/m.**

Refer to bracing details on drawing A17 for further information.

Legend & Notes
- **DS:** Double stud
- **Roof pitch:** 22.5º
- **Ceiling height:** 2400mm
- **Roof battens:** typically 70 x 35 deep MGP12 @ 900 crs.
- All timber construction to be in accordance with AS 1684.2 (Residential Timber Framed Construction) and the BCA.

Lintel Schedule
- **L1:** 90 x 45 F17
- **L2:** 140 x 45 F17
- **L3:** 190 x 45 F17
- **L4:** 240 x 45 F17

Galvanized Steel Lintels
- 600 - 1200mm: 85 x 7 Flap
- 900 - 2100mm: 100 x 100 x 10 Angle
- 2100 - 3000mm: 150 x 100 x 10 Angle

Wall Framing
- Wall framing to be F17 kiln dried hardwood
- Common studs: 90 x 45 @ 450 crs
- Studs around Wet Areas: 90 x 45 @ 450 crs
- Noggings: 90 x 35
- Open studs: 90 x 35
- Top & bottom plates: 90 x 45
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

For Reference Only

Information

Roof Plan

Date: 2/11/2016

Accredited Practitioner:
Name
Address
Phone number

Owner / Client:
Consumer Building & Occupational Services
Project: Class 1a (Two Storey) Example
2 Example Street, TASMANIA

Drawing Title:
Roof Plan

Drawing No.: A09

Status:

Legend & Notes

- Gable vent
- Flue with Deltite flashing and roof silicone around all fixings.
- Battens typically 70 x 35 deep MGP12 @ 900 max. centres. (Use F5 KD treated pine if battens on top of sarking).
- See BCA Vol. 2 Figure 3.5.1.5 Diagram b for definition of internal and end spans.
- Additional battens or blocking pieces may be required.
- Sarking must comply with AS/NZS 4200 parts 1 and 2.
- Downpipes must not serve more than 12m of gutter length for each downpipe.
- Roof cladding to comply with AS 1562.1.
- Roof drainage must comply with:
 - Plumbing Code of Australia Part D1
 - AS/NZS 3500.3
 - BCA Volume 2 parts 3.1.2 and 3.5.2.
 (Deemed to Satisfy provisions)

- Gutter high point
- Colorbond custom orb roof sheeting at 22.5º pitch. One and a half corrugation side lap (typical).
- Colorbond custom orb roof over entry at 5º pitch.

- Fall
- Valley
- Gable vent
- Colorbond Trimline gutters (typical).
- External walls dotted below.
- Battens typically 70 x 35 deep MGP12 @ 900 max. centres. (Use F5 KD treated pine if battens on top of sarking).

- Colorbond custom orb roof sheeting crest fixed at side laps with 3 fixings for internal spans and 5 for end spans. Colour: Basalt.
- Fix with RoofZips M6 x 50mm (or equal). Colour: Basalt.

- Flue with Dektite flashing and roof silicone around all fixings.
- Eaves vents with aluminium mesh backing at intervals as shown (1800mm max centres).

- Refer to AS15 Bushfire Protection Plan for sealing requirements.
- Colorbond custom orb 0.42 roof sheeting crest fixed at side laps with 3 fixings for internal spans and 5 for end spans. Colour: Basalt.
- Fix with RoofZips M6 x 50mm (or equal). Colour: Basalt.

- Batterly typically 70 x 35 deep MGP12 @ 900 max. centres. (Use F5 KD treated pine if battens on top of sarking).

- See BCA Vol. 2 Figure 3.5.1.5 Diagram b for definition of internal and end spans.
- Vapour permeable sarking installed as per manufacturer’s instructions. Ensure there is a clear unimpeded path of travel for water to escape from sarking into the eaves gutter.

- Gutter high point
- Colorbond custom orb roof sheeting at 22.5º pitch. One and a half corrugation side lap (typical).
- Colorbond custom orb roof sheeting crest fixed at side laps with 3 fixings for internal spans and 5 for end spans. Colour: Basalt.
- Fix with RoofZips M6 x 50mm (or equal). Colour: Basalt.

- Battens typically 70 x 35 deep MGP12 @ 900 max. centres. (Use F5 KD treated pine if battens on top of sarking).

- See BCA Vol. 2 Figure 3.5.1.5 Diagram b for definition of internal and end spans.
- Vapour permeable sarking installed as per manufacturer’s instructions. Ensure there is a clear unimpeded path of travel for water to escape from sarking into the eaves gutter.

- Additional battens or blocking pieces may be required.
- Sarking must comply with AS/NZS 4200 parts 1 and 2.
- Downpipes must not serve more than 12m of gutter length for each downpipe.
- Roof cladding to comply with AS 1562.1.
- Roof drainage must comply with:
 - Plumbing Code of Australia Part D1
 - AS/NZS 3500.3
 - BCA Volume 2 parts 3.1.2 and 3.5.2.
 (Deemed to Satisfy provisions)
In the diagram:

- **BATH ROOM**: A terminal 50Ø sewer line suspended under floor framing.
- **ENSUITE**: A 100Ø UPVC sewer stack and 50Ø vent to roof.
- **KITCHEN**: HBC with vacuum breaker fitted (typical).
- **WC**: Install inspection openings at major bends for stormwater and all low points of downpipes.
- **LAUNDRY**: A 100Ø UPVC sewer line suspended under floor framing.
- **90Ø DP.**: Wet areas shown hatched. Refer to drawing A20 for waterproofing details.
- **50Ø vent in wall through to roof.**

Services

The heated water system must be designed and installed with Part B2 of the NCC Volume Three - Plumbing Code of Australia.

- **Thermal insulation for heated water piping**:
 a) be protected against the effects of weather and sunlight;
 b) be able to withstand the temperatures within the piping; and
 c) use thermal insulation in accordance with AS/NZS 4859.1

Heated water piping that is not within a conditioned space must be thermally insulated as follows:

1. **Internal piping**
 - All flow and return internal piping that is:
 i) within an unventilated wall space
 ii) within an internal floor between storeys; or
 iii) between ceiling insulation and a ceiling
 - Must have a minimum R-Value of 0.2 (i.e. 9mm of closed cell polymer insulation)

2. **Piping located within a ventilated wall space, an enclosed building subfloor, or a roof space**
 - All flow and return piping
 - Cold water supply piping and Relief valve piping within 500mm of the connection to central water heating system
 - Must have a minimum R-Value of 0.45 (i.e. 19mm of closed cell polymer insulation)

3. **Piping located outside the building or in an unenclosed building sub-floor or roof space**
 - All flow and return piping
 - Cold water supply piping and Relief valve piping within 500mm of the connection to central water heating system
 - Must have a minimum R-Value of 0.6 (i.e. 25mm of closed cell polymer insulation)

Piping within an insulated timber framed wall, such as that passing through a wall stud, is considered to comply with the above insulation requirements.
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Ground Floor Reflected Ceiling Plan

LEGEND & NOTES

- **Pb.** Plasterboard lining @ 2400AFL (2500AFL in garage)
- Maximum ceiling support spacing = 600mm
- **Light switch (2w = 2 way switch)**
- **MB.** Meter box
- Smoke alarm, hard wired with battery backup. To AS 3786 and Part 3.7.2 of current BCA. All smoke alarms to be interconnected.
- **External sensor (to meet BCA requirement that external lights be controlled by a daylight sensor)**
- **Recessed LED downlight (11W)**
- **3in1** Combination light, fan & heat lamp unit (4 lamp).
 - 4 x 275W heat lamps (not included in calculation)
 - 1 x 15W fluorescent globe
- **Fl.** Surface mounted 1 x 28W fluorescent fitting
- **LED Up/Down exterior wall light (12W)**
 - mounted at 1800mm AFL.
- **LED Up/Down interior wall light (16W)**
 - mounted at 1800mm AFL.
- Dimmer switches to be installed on lights in bedrooms, living and dining areas.
- **External lights** must be controlled by a daylight sensor (as shown), or have an average light source efficacy of not less than 40 lumen/W.
- **Bathroom fans** to be fitted with backdraught dampers / shutters and ducted to outside via wall vent.
- See drawing A23 Lighting Calculator for Energy Efficiency compliance.

External condensing unit for heat pump below deck and exposed to northern sun.

See drawing A23 Lighting Calculator for Energy Efficiency compliance.
For Reference Only
This drawing is representative of the documentation requirements of Schedule 1.
The content should not be relied upon as accurate for another building project.

Project: Class 1a (Two Storey) Example 2 Example Street, TASMANIA

Drawing Title: First Floor Reflected Ceiling Plan

Date: 2/11/2016

Adjustment of minimum R-Value for loss of ceiling insulation (BCA Table 3.12.1.1b):

Minimum R-Value of ceiling insulation required to satisfy BCA 3.12.1.2(a) = R4.6

Total habitable ceiling area: 172m²
Area of fans / lights: 1.50m²

1.50 / 172 x 100 = 0.87% of ceiling area uninsulated due to light fittings and fans (see BCA table 3.12.1.1b)

BCA requires upgraded insulation from 4.5 to 5.4.

R6.0 batts required to ceiling
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

LEGEND & NOTES

CJ. Control joint
S. Sliding window
DP. Downpipe
F. Fixed window
SD. Sliding door
CL. Ceiling level
A. Awning window
FL. Floor level

CL:01 Split face design blockwork 390W x 190H x 90mm th. with light grey mortar & ironed joints. Colour: Charcoal. Installation details on A16.

CL:02 Hebel PowerPanel aerated concrete panels, 75mm th. with applied texture coating. Colour: white. Installation details on A16.

CL:03 Cemintel Designer Series 16mm th. horizontal panels Colour & Style: Woodgrain Teak. Installation details on A17.

CL:04 Split face design blockwork 390W x 190H x 140mm th. with light grey mortar & ironed joints. Colour: Charcoal. Installation details on A16. (Refer to drawing A16 & A17 for cladding installation details)

RF:01 Colorbond custom orb roof, colour: Basalt.

GB:01 Glass balustrade, min. 1,000mm high to comply with AS1288. 40dia. Ø rod bracing. Corrosion protect and paint; colour Basalt.

WF:01 Powdercoated aluminium window / door frames Colour: Basalt.

Refer to window schedule on drawing A21 for identification of windows requiring protection to openings.

Unprotected embankments must not have a slope greater than 1:1 for this installation.

Sub-floor ventilation as noted on drawing A06.

Top of flue minimum 300mm above the highest part of the building within 3.6m.

Aluminium gable vent; colour Basalt.

Aluminium gable vent; colour Basalt.

A. Awning window
F. Fixed window
CL. Ceiling level
FL. Floor level

NORTH WEST ELEVATION
 scale 1:100

NORTH EAST ELEVATION
 scale 1:100

Consumer Building & Occupational Services
Owner / Client:

Class 1a (Two Storey) Example
Project:
2 Example Street, TASMANIA

Drawing Title: Elevations 01

Date: 2/11/2016

Status: INFORMATION

Scale @ A3: 1:100

Drawing No.: A14

(4 of 25)
INFORMATION

A15

02/11/2016

Scale @ A3: 1:100

SOUTH WEST PATIO ELEVATION

scale 1:100

Absorption trench and cut off drain.

Sub-floor ventilation as noted on drawing A06.

Interlocking landscape retaining wall.

Natural ground line dotted.

Walls:
- RW2
- RW3
- RW4

Doors:
- DP
- CJ

Floors:
- FFL
- GFL

GFL: 5.500

FFL: 8.300

Aluminium gable vent; colour Basalt.

Natural ground line dotted.

Legends & Notes:
- CJ: Control joint
- DP: Downpipe
- SD: Sliding door
- A: Awning window
- CL: Ceiling level
- FL: Floor level
- S: Sliding window
- F: Fixed window
- GB: Glass balustrade
- W: Window
- D: Door

Information:
- Colour: Basalt
- Colour: White
- Colour: Woodgrain Teak
- Colour: Charcoal
- Colour: Split face designer blockwork
- Colour: Designer Series
- Colour: Powdercoated aluminium window/door frames
- Colour: Natural ground line dotted
- Absorption trench and cut off drain
- Interlocking landscape retaining wall
- Maximum height above natural ground

Architectural Details:
- Ceiling level CL:02
- Floor level FFL: 8.300
- Colour & Style: Woodgrain Teak
- Colour: Charcoal
- Colour: Split face designer blockwork
- Colour: Designer Series
- Colour: Powdercoated aluminium window/door frames

Building Details:
- GFL: 5.500
- FFL: 8.300
- Absorption trench and cut off drain
- Interlocking landscape retaining wall
- Maximum height above natural ground
- Colour: Natural ground line dotted
- Colour: Absorption trench and cut off drain
- Colour: Interlocking landscape retaining wall
- Colour: Maximum height above natural ground

Owner/Client:
Consumer Building & Occupational Services
2 Example Street, TASMANIA

Project:
Class 1a (Two Storey) Example

Drawing Title:
Elevations 02

Drawing No.:
A15

Date:
2/11/2016

Status:
INFORMATION

Scale:
A3
1:100

Accredited Practitioner:

Name
Address
Phone number

Tasmanian Government

FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.
Roof sarking to comply with AS/NZS 4200. Sarking installation to be in accordance with manufacturer’s recommendations for selected roof coverings. Consideration must be given to the use of vapour permeable sarking for condensation control. Moisture must have a clear unimpeded path of travel to the gutter in all cases.

Bulk insulation directly above ceiling. Minimum 100mm distance from top of uncompressed insulation to roof sarking at the lowest point. 70 x 35 MGP12 battens at max. 900mm centres. Wall tie down to truss manufacturer’s details. 0.42 Colorbond custom orb roof sheeting at 22.5deg. pitch. Foam filler to suit roofing profile. Lysaght quad gutter in selected colorbond finish. Lysaght ‘Novaline’ fascia. 4.5mm thick Hardiflex eaves lining fixed to 70 x 35 F5 trimmers. Paint finish.

MASONRY CONSTRUCTION

Blocks and Blocklaying
Blackwork sizes for this building are: 390 x 190 x 90mm and 390 x 190 x 140mm, as nominated on the plans and elevations. Finish is split face designer block, colour: Charcoal. All blocks to be laid in stretcher bond with ironed joints. (Inside of subfloor walls and rear of retaining walls may have flush joints). Blocks must be kept dry on site and should be laid with the thicker part of the shell uppermost.

Joints
Horizontal and vertical mortar joints should be 10mm thick and should be filled with mortar mix as outlined below.

Mortar Mixtures
M1 applications (above DPC) 1 : 1 : 6 - one part GP cement, one part hydrated lime and six parts block laying sand; or 1 : 0 : 5 with methyl cellulose water thickener.
M4 applications (below DPC) 1 : 1/2 : 4/3 - one part GP cement, 1/2 part hydrated lime and 4/3 parts block laying sand; or 1 : 0 : 4 with methyl cellulose water thickener.

Do not use brickies lean.

Control / Articulation Joints
10mm wide with compressible backing foam and mastic sealant to AS 3700. Masonry Flexible Anchors at half height and every 600mm above. Blockwork ties either side of joint back to frame at every course. As indicated on plans and elevations, or at no more than 6m centres.

Grounting or Blockfill (Retaining Walls)
Before pouring grout, all mortar droppings should be cleaned out of the vertical cores. Provide clean out openings at the base of the retaining walls for this purpose. Grout to have a compressive strength of 20MPa with cement content not less than 300kg per cubic metre. Placed with a mechanical vibrator.

Wall Ties
R3 Steel ties with 470g/m² galvanising or better. Approved masonry veneer ties are attached to the timber frame at every stud and at the following locations (to comply with AS 3700 clause 4.10): - Not more than 600mm in each direction - Adjacent to vertical lateral supports - Adjacent to control / articulation joints - Around openings Screw fix masonry veneer ties to outside of timber frame. The first ties at the bottom should be in the first masonry joint above the timber bottom plate and the last ties at the top should be embedded in the last joist. Double the amount of ties at the top of walls, at intersecting walls and around door and window openings and articulation joints and below an intermediate floor support.

Damp Proof Course (DPC)
Embossed polythene coated aluminium DPC. Laid not less than 150mm above finished ground level or not less than 75mm above finished concrete paths or paving. DPC should extend to be visible at the outer face of the wall.

Weepholes
Provide weepholes to external leaves of cavity walls in the course immediately above flashings, and cavity fill, and at the bottoms of unlifted cavities. Form: Open perpends with corrosion resistant wire mesh inserts, maximum aperture of 2mm. Maximum spacing: 1200mm.

Sub-floor Vents
390 x 190 blackwood vent: metal louvred vent @ 1600mm centres, with approved bushfire mesh max. 30mm aperture. Locations as shown on drawing A06, A14 and A15.

Paring & below ground masonry protection
Where masonry walls are located over footings below ground, the junction between footing and masonry should be parged with mortar and the parging and masonry up to just below paving surface (or ground level) given at least two coats of bitumenous sealant such as Hydrosel.
CEMINTEL DESIGNER SERIES (CDS) INSTALLATION DETAILS

1. Base flashing is required to protect the frame / floor junction while allowing ventilation and moisture to freely escape. The flashing must be mitred and sealed at all corners.
2. Steel CDS horizontal panel starter strip over base flashing at the base of the panels. Screwed to base plate at 250mm crs.
3. Install panel fixing clips as per manufacturer’s standard details.
4. Leave panels 20mm short of eaves to allow for ventilation and install CDS coloured eaves trim.
5. Refer to manufacturer’s standard details for flashings around window and door openings. (Cladding system as proposed is compliant to BAL-40)

02 TYPICAL WINDOW HEAD DETAIL

- 390L x 190H x 90D blockwork.
- Vapour permeable wall wrap.
- Head flashing turned up not less than 150mm, fixed to frame and turned into angle lintel.
- Weepholes not more than 1,200mm centres.
- Weatherproofing of masonry to comply with AS 3700 and AS 4773 Parts 1 and 2.

03 TYPICAL WINDOW SILL DETAIL

- 16mm Cemintel Designer Series cladding.
- Woodgrain Teak. CDS to be installed strictly in accordance with manufacturer’s installation manual.

04 GARAGE DOOR HEAD DETAIL

- 250 AFL.
- 300 PFC.
- Head flashing turned up not less than 150mm, fixed to frame and turned into angle lintel.
- Weepholes not more than 1,200mm centres.
- Vapour permeable wall wrap.

05 CLADDING JUNCTION DETAIL

- Preformed 86mm corner.
- 20mm gap between edge of Hebel Powerpanel and outer stud frame. Fill with 75 x 20 polyurethane air seal open cell foam.
- Flashing to protrude at least 10mm past edge.
- R2.5HD insulation between studs.
- Primer and CDS colour matched sealant with CDS joint backing strip behind.
- Hebel PowerPanel on 35mm horizontal steel battens. Fixings as described on drawing A16.
- To be installed strictly in accordance with manufacturer’s installation manual.

06 CLADDING JUNCTION DETAIL

- Hebel PowerPanel
- 30 x 0.8mm galv. metal straps looped over plate and fixed to stud with 4 / 30 x Ø2.8mm galv. flat head nails to each end in 4 places.
- 30 x 0.8mm (or equivalent) tensioned galv. metal straps nailed to plates with 4 / 30 x Ø2.8mm galv. flat head nails (or equivalent) to each end.
- Bottom plate fixed to slab / timber floor frame as per ‘Specific Tiedowns’ table on drawings A06 and A07.

INFORMATION

- Plywood shall be nailed to frame using 30 x Ø2.8mm galv. flat head nails as shown. Plywood shall be 4mm F27 HW with studs at 450mm centres.
- Horizontal butt joints permitted, provided nails fixed to nogging at 50mm centres (for Method B).
- A 13kN capacity connection at each end and intermediately at max. 1200mm centres is required.
- Sheathed panels shall be connected to subfloor.

Construction Details 02

Date: 2/11/2016

Status: INFORMATION

Drawing Title: Construction Details 02

Owner / Client: Consumer Building & Occupational Services

Project: Class 1a (Two Storey) Example Street, TASMANIA

Drawing No.: A17

Rev. Amendment Date: 1.5, 1:10, 1:50
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Drawing Title: Section A & Section B

Project: Class 1a (Two Storey) Example 2 Example Street, TASMANIA

Date: 2/11/2016

Scale: 1:100

Drawing No.: A18

Amendment: Rev. 1

Section A (scale 1:100)

- **Living Room:** 22.5 degree roof pitch
- **Bedroom:** Stair void
- **Garage:** RW3
- **Rumpus:** Colorbond custom orb @ 5 degree pitch over entry.
- **Plasterboard wall and ceiling lining:** RW1
- **Ventilated ridge:** RW2
- **Roof trusses by manufacturer:** Designed by structural software to comply with BCA 3.4.0.2.
- **Vapour permeable sarking to roof and external walls:** Bulk insulation on top of ceiling. Minimum 100mm clearance from top of insulation to underside of vapour permeable roof sarking.
- **Colorbond gutter & fascia:**
- **Hebel Powerpanel to First Floor:** Refer to A16 for typical wall section.
- **bulk insulation on top of ceiling. Minimum 100mm clearance from top of insulation to underside of vapour permeable roof sarking:**
- **Vapour permeable sarking (facing cavity):** R6.0 batts on top of ceiling. R6.8 achieved
- **Concrete slab on ground:** 0 required (Not required unless containing an in-slab heating system)

Section B (scale 1:100)

- **Living Room:** 22.5 degree roof pitch
- **Bedroom:** Stair void
- **Garage:** RW3
- **Rumpus:** Colorbond custom orb @ 5 degree pitch over entry.
- **Plasterboard wall and ceiling lining:** RW1
- **Ventilated ridge:** RW2
- **Roof trusses by manufacturer:** Designed by structural software to comply with BCA 3.4.0.2.
- **Vapour permeable sarking to roof and external walls:** Bulk insulation on top of ceiling. Minimum 100mm clearance from top of insulation to underside of vapour permeable roof sarking.
- **Colorbond gutter & fascia:**
- **Hebel Powerpanel to First Floor:** Refer to A16 for typical wall section.
- **bulk insulation on top of ceiling. Minimum 100mm clearance from top of insulation to underside of vapour permeable roof sarking:**
- **Vapour permeable sarking (facing cavity):** R6.0 batts on top of ceiling. R6.8 achieved
- **Concrete slab on ground:** 0 required (Not required unless containing an in-slab heating system)

LEGEND & NOTES

Energy Efficiency (Refer BCA 3.12)

A seal to restrict air infiltration must be fitted to each edge of an external door & openable window (including internal garage door).

A window complying with the maximum air infiltration rates specified in AS 2047 need not comply with the above.

A seal for the bottom edge of an external swing door (including internal garage door) must be a draft protection device (Raven or equivalent).

Other edges of an external swing door or the edges of an openable window may be a foam or rubber compressible strip, fibrous seal or the like.

Roof, external walls, external floors and openings such as door and window frames must be constructed to minimise air leakage, ie:

- Enclosed by internal lining systems that are close fitting at the ceiling, wall and floor junctions; OR
- Sealed by caulking, skirting, architraves, cornices or the like.

Sarking

Vapour permeable wall wrap installed as per manufacturer's instructions. (Will be specific for different buildings).

Vapour permeable roof sarking installed as per manufacturer's instructions. (Will be specific for different buildings). Water must have a clear unimpeded path of travel to the gutter.

Condensation

Reference should be made to the ABCB Condensation in Buildings Handbook 2014 (download from www.abcb.gov.au), and Condensation in Buildings Tasmanian Designers’ Guide (by Building Standards and Occupational Licensing)

It is the Designer / Architect's responsibility to consider condensation control.

Insulation Requirements (Climate Zone 7)

- **External walls:** R2.8 required
- **Vapour permeable sarking (facing cavity):** R0.43
- **R2.5 wall batts:** R2.4
- **R3.49 achieved**
- **Roof & ceiling:** R4.6 required (based on Solar Absorptance value of 0.45):
 - BCA value for pitched roof & flat ceiling: R0.21
 - Vapour permeable sarking (ventilated roof space): R0.59
 - R6.0 batts on top of ceiling: R6.0
 - R6.8 achieved
- **Concrete slab on ground:** 0 required (Not required unless containing an in-slab heating system)

Garage

Refer to A03 Floor Plan for location of R2.5 insulation to walls separating Garage from the dwelling. No other insulation is required to external garage walls.

No insulation is required to garage ceiling, but has been shown for this project.

Complies with minimum 6 star requirements of BCA 2014.

Refer also to separate Energy Assessment (required, but not provided with this example drawing set).

ALL WORK SHALL BE IN ACCORDANCE & COMPLY WITH THE BUILDING CODE OF AUSTRALIA, COUNCIL BY-LAWS, RELEVANT AUSTRALIAN STANDARDS AND CURRENT WORKPLACE STANDARDS CODES OF PRACTICE.
Stair Details

Riser and going dimensions
Riser (R) = 187mm
Going (G) = 250mm
2R+G = 624mm (Slope relationship)

Outline of void dotted.

90 x 90 F17 newell post.

Carpet finish to landing and all treads.

Proprietary handrail support.

Note:
- The balustrades must be capable of bearing loading forces according to AS 1170.1.
- The balustrades should not permit a 125mm sphere to pass through.
- Maximum space between all balusters should not permit a 125mm sphere to pass through.
- Slip resistance of stair treads to comply with NCC 3.9.1.4 and AS 4586.
- Minimum head height of 2,000mm from top of nosing.
- Maximum space between all balusters should not permit a 125mm sphere to pass through.
- Slip resistance of stair treads to comply with NCC 3.9.1.4 and AS 4586.

Handrail Section C

Maximum head height of 2,000mm from top of nosing.

Stair Section D

Note:
- The balustrades must be capable of bearing loading forces according to AS 1170.1.
- The balustrades should not permit a 125mm sphere to pass through.
- Slip resistance of stair treads to comply with NCC 3.9.1.4 and AS 4586.
- Minimum head height of 2,000mm from top of nosing.
- Maximum space between all balusters should not permit a 125mm sphere to pass through.
- Slip resistance of stair treads to comply with NCC 3.9.1.4 and AS 4586.

Stair Plan

Scale 1:20

Accredited Practitioner:
Name
Address
Phone number

Owner / Client:
Consumer Building & Occupational Services
Class 1a (Two Storey) Example
2 Example Street, TASMANIA

Drawing Title:
Stair Details

Date: 2/11/2016
Status: INFORMATION
Scale @ A3: 1:20, 1:5
Drawing No.: A19 (9 of 25)
Waterproof means the property of a material that does not allow moisture to penetrate through it. Waterproofing is the application of materials that restrict moisture movement and will not degrade under conditions of moisture.

Wet Areas (To comply with BCA 3.8.1.2 and AS 3740)

<table>
<thead>
<tr>
<th>Vessels or area where the fixture is installed</th>
<th>Floors and horizontal surfaces</th>
<th>Walls</th>
<th>Wall junctions and joints</th>
<th>Wall / floor junctions</th>
<th>Penetrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shower area (applies to Bathrooms and Ensuite)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With preformed shower base</td>
<td>N/A</td>
<td>N/A</td>
<td>Waterproof wall junctions within shower area. Membrane 'M01'.</td>
<td>Waterproof wall / floor junctions. Membrane 'M02'.</td>
<td></td>
</tr>
<tr>
<td>With step down</td>
<td>Waterproof floor in shower area including step down (M01)</td>
<td>Waterproof wall junctions within shower area. Membrane 'M01'.</td>
<td>Waterproof wall / floor junctions within shower area. Membrane 'M01'.</td>
<td>Waterproof floor penetrations within shower area. Membrane 'M01'.</td>
<td>Waterproof tap and spout penetrations with 'Waterbar' tap penetration flange and silicone.</td>
</tr>
</tbody>
</table>

Area outside shower area (applies to Bathrooms and Ensuite)					
Timber floor	Waterproof floor of the room. Membrane 'M02'.	N/A	Waterproof wall / floor junctions. Membrane 'M02'.	N/A	
Concrete floor	Water resistant floor of the room. Ceramic floor tiles.	N/A	Waterproof wall / floor junctions. Membrane 'M02'.	N/A	

Area adjacent to bath (applies to Bathroom)					
Timber floor	Waterproof floor of the room. Membrane 'M01'.	a) 150mm min. high ceramic tile splashback to perimeter of bath b) Ceramic tile upstand from floor level to underside lip of bath.	White silicone to junctions within 150mm above bath (3 x walls).	Ceramic tile upstand to extent of bath.	Waterproof tap and spout penetrations in horizontal surfaces with 'Waterbar' tap penetration flange and silicone.
Other areas	N/A	N/A	Waterproof wall / floor junctions. Membrane 'M02'.	N/A	
Laundry and WC	Water resistant floor of the room. Cf tiles.	N/A	Waterproof wall / floor junctions. Membrane 'M02'.	N/A	
Walls adjoining sink, basin or laundry tub	150mm min. high ceramic tile splashback for extent of vessel, where the vessel is within 75mm of a wall.	Waterproof wall junction where vessel is fixed to a wall with silicone.	Waterproof tap and spout penetrations if within splashback with 'Waterbar' tap penetration flange and silicone.	N/A	

KEY
- Membrane 'M01': Dunlop (or similar) shower waterproofing kit complete with reinforcing mat, primer, neutral cure silicone and membrane to manufacturer's recommendations.
- Membrane 'M02': Dunlop (or similar) water based acrylic polyurethane membrane applied by either brush or roller in a consistent thickness to manufacturer’s recommendations.

Waterproofing Details

- **Waterproof floor** (concrete) Waterproof floor (timber)
- **Waterproofing membrane** not required below pre-formed shower bases, but still required at wall to wall junction, wall to floor junction and penetrations (including floor waste)
- **Waterproof membrane** not required below pre-formed shower bases, but still required at wall to wall junction, wall to floor junction and penetrations (including floor waste)
- **Waterproof tap and spout penetrations** in horizontal surfaces with 'Waterbar' tap penetration flange and silicone.

NOTES
- **For unenclosed showers on concrete or cement sheet, waterproof the floors out to 1500mm from shower connection at wall. For timber or particleboard flooring, waterproof the whole floor.**
- **For reference only**
Windows (to be read with Glazing Calculator)

<table>
<thead>
<tr>
<th>No.</th>
<th>Window Size</th>
<th>Setout</th>
<th>Operation</th>
<th>Opening size</th>
<th>Glass Values</th>
<th>Frame</th>
<th>Orientation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>600H x 2100W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazing</td>
<td>Thermally broken aluminium</td>
<td>South-West</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>600H x 2100W</td>
<td>FL @ 1500</td>
<td>Swinging</td>
<td>1.26m</td>
<td>Clear double glazing</td>
<td>Thermally broken aluminium</td>
<td>South-East</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>600H x 2100W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazing</td>
<td>Thermally broken aluminium</td>
<td>North-West</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>600H x 2100W</td>
<td>FL @ 1500</td>
<td>Swinging</td>
<td>1.26m</td>
<td>Clear double glazing</td>
<td>Thermally broken aluminium</td>
<td>North-West</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>600H x 2100W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazing</td>
<td>Thermally broken aluminium</td>
<td>South-East</td>
<td></td>
</tr>
</tbody>
</table>

Glazed Doors

<table>
<thead>
<tr>
<th>No.</th>
<th>Window Size</th>
<th>Setout</th>
<th>Operation</th>
<th>Opening size</th>
<th>Glass Values</th>
<th>Frame</th>
<th>Orientation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2100H x 900W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazed Grade A toughened laminated safety glass Outer layer min. 5mm thick</td>
<td>Thermally broken aluminium</td>
<td>South-East</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>2100H x 820W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazed Grade A toughened laminated safety glass Outer layer min. 5mm thick</td>
<td>Thermally broken aluminium</td>
<td>South-West</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>2100H x 820W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>1.26m</td>
<td>Clear double glazed Grade A toughened laminated safety glass Outer layer min. 5mm thick</td>
<td>Thermally broken aluminium</td>
<td>South-East</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>2100H x 2100W</td>
<td>FL @ 1500</td>
<td>Sliding</td>
<td>2.02m</td>
<td>Clear double glazed Grade A toughened laminated safety glass Outer layer min. 5mm thick</td>
<td>Thermally broken aluminium</td>
<td>South-West</td>
<td></td>
</tr>
</tbody>
</table>

Natural Light and Ventilation

PART 3.8.4 LIGHT
Minimum 10% of the floor area of a habitable room required (natural light).

PART 3.8.5 VENTILATION
Minimum 5% of the floor area of a habitable room required.

An exhaust fan may be used for a sanitary compartment, laundry or bathroom provided contaminated air discharges directly to the outside of the building by way of ducts.

Flashes to Wall Openings

All openings must be adequately flashed using materials that comply with AS/NZS 2904. Refer to drawing A17 for window head and sill details. Flashing to be installed with glazing manufacturer’s specifications for brick veneer construction.

Protection of openable windows

A window opening must be protected with provision, if the floor below the window in a bedroom is 2m or more above the surface beneath.

Protect the windows (identified in the table beside) by one of the following methods:

- a device capable of restricting the window opening; or
- a screen with secure fittings.

The device or screen must:

- Not permit a 125mm sphere to pass through the window opening or screen; and
- Resist an outward horizontal action of 250N against the: window restrained by a device; or screen protecting the opening; and
- Have a child resistant release mechanism if the screen or device is able to be removed, unlocked or overridden.

Glazing types available in Tasmania can be accessed at www.wers.net.

Shower Screens

1B004 Semi-frameless shower screens to comply with BCA Table 3.6.5. & AS1288.

Minimum 4mm thick Grade A toughened safety glass, labelled to comply with industry standards.

Opaque Bands

Where glazed doors or side panels are capable of being mistaken for a doorway or opening, the glass must be marked to make it readily visible as follows:

- Marking in the form of an opaque band not less than 20mm in height.
- The upper edge is not less than 70mm above the floor.
- The lower edge is not more than 1200mm above the floor.

FOR REFERENCE ONLY

This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Notes

- The upper edge is not less than 700mm above the floor;
- The lower edge is not more than 1200mm above the floor.

Flyscreens to be fitted to all openable windows and doors. Refer to Energy Assessment for glazing U-Value and SHGC requirements. Glazing types available in Tasmania can be accessed at www.wers.net.

Drawing Title:

Accredited Practitioner: Name Address Phone number

Owner / Client: Consumer Building & Occupational Services Project: Class 1a (Two Storey) Example 2 Example Street, TASMANIA

Drawing No.: A21

Date: 2/11/2016

INFORMATION

Scale @ A3: 1:100

A21 (1 of 25)
In this situation of a failed glazing calculator, a separate Energy Assessment is required.

Energy Assessors take a lot of other building factors (in isolation) into consideration, not available to the Designer / Architect on the standard Glazing Calculator.

Modifying the U-Values and SHGC just to obtain a green tick will often make the cost of the glazing unaffordable to the owner.

A separate Glazing Calculator is required for each storey.
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Lighting Calculator for Use with J6.2(a) Volume One and 3.12.5.5 Volume Two (First Issued with NCC 2014)

Drawing Title:
Lighting Calculator

Accredited Practitioner:
Name
Address
Phone number

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example
2 Example Street, TASMANIA

Date:
2/11/2016

Building Information
- Project:
 - 2 Example Street, TASMANIA
- Drawing No.: [image]
- Status: [image]

Lighting Calculator

Description
- **Type of space**
- **Floor area of the space**
- **Design Luminaire Power Load**

Location
- **Location**
- **Adjustment Factor One (Design Luminance Factor)**
- **Adjustment Factor Two (By Class 1.13)**

Overall Design Passes
- **Lamp Type**
- **System Share of A1 (As Appointed Alloccation)**

Design Power
- **Class 1 building**
- **Verandah or balcony**

Design Power

Note: The Lighting Calculator has been developed by the ABCS to assist in developing a better understanding of lighting energy efficiency parameters. While the ABCS believes the Lighting Calculator, if used correctly, will produce accurate results, the calculator is provided "as is" and without any representation or warranty of any kind, including that it is fit for any purpose or is merchantable quality, or functions as intended or at all. Your use of the Lighting Calculator is at your own risk and the ABCS accepts no liability of any kind.

FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.
FOR REFERENCE ONLY
This drawing is representative of the documentation requirements of Schedule 1. The content should not be relied upon as accurate for another building project.

Additional information required for a Building Application:
1. BAL Assessment / Report by an Accredited Bushfire Assessor.
2. Bushfire Hazard Management Plan prepared by an Accredited Bushfire Assessor.
Access and Water to comply with 'BCA Tas 3.7.4.1 Vehicular Access' and 'BCA Tas 3.7.4.2 Water Supply' and shall be shown and specified within the above documents.
For current information and further details on the above, refer to Department of Justice website: http://www.justice.tas.gov.au/building/regulation/building_in_hazardous/bushfire-prone_areas

BUSHFIRE RELATED NOTES (BAL-19)
To comply with Section 6 of AS3959-2009. Including, but not limited to the following:

Joints
All joints in the external surface material of walls shall be covered, sealed, overlapped, backed or butt-jointed to prevent gaps greater than 3mm.

Vents and Weepholes
Vents and weepholes in external walls shall be screened with aluminium mesh with a maximum aperture of 2mm, except where the vents and weepholes have an aperture less than 3mm.

Windows / Glazing
Window frame and supporting frame shall be powdercoated aluminium with toughened glass minimum 5mm thickness. Openable portions of windows to be screened internally or externally with screens as described below.

Screens for Windows
Aluminium screens within powdercoated aluminium frames must have a maximum aperture of 2mm. Gaps between the perimeter of the screen assembly and the window frame shall not exceed 3mm.

Roof
Roof sheeting to be colorbond (i.e. non-combustible). The roof / wall junction shall be sealed, to prevent openings greater than 3mm, by the use of fascias and eaves lining.
Roof ventilation openings, such as gable and roof vents, shall be fitted with aluminium ember guards with a maximum aperture of 2mm.
Sheet roof to be fully sarked. The sarking shall:
- be located on top of the roof framing, except that the roof battens may be fixed above the sarking,
- cover the entire roof area including hips - with exception of ridges which should be vented to avoid condensation (see approved BSOL details within "Condensation in Buildings" Tasmanian Designer’s Guide); and
- extend into gutters and valleys.
Any gaps greater than 3mm (such as under corrugations or ribs of sheet roofing and between roof components) sealed at the fascia or wall line and at valleys, hips and ridges by -
(i) aluminium mesh with maximum aperture of 2mm;
(ii) mineral wool;
(iii) other non-combustible material; or
(iv) a combination of any of the above items.

Roof Penetrations
Roof penetrations, including roof ventilators, roof-mounted evaporative cooler units, aerials, vent pipes and supports for solar collectors shall be adequately sealed at the roof to prevent gaps greater than 3mm. The material used for sealing shall be non-combustible.
Openings in roof ventilators or vent pipes shall be fitted with aluminium ember guards with a maximum aperture of 2mm.
Evaporative cooling units (fitted to the roof) to be fitted with non-combustible butterfly closers as close as practicable to the roof level, or the unit shall be fitted with non-combustible covers with aluminium mesh or perforated sheet with a maximum aperture of 2mm.

1. BAL Assessment / Report by an Accredited Bushfire Assessor.
2. Bushfire Hazard Management Plan prepared by an Accredited Bushfire Assessor.
Access and Water to comply with 'BCA Tas 3.7.4.1 Vehicular Access' and 'BCA Tas 3.7.4.2 Water Supply' and shall be shown and specified within the above documents.
For current information and further details on the above, refer to Department of Justice website: http://www.justice.tas.gov.au/building/regulation/building_in_hazardous/bushfire-prone_areas
Laundry & Dining external doors
- Aluminium door with double glazing, external layer min. 5mm thick toughened laminated safety glass
- Aluminium frame
- Door shall be tight fitting to the door frame
- Raven RP126Si (or equivalent) mechanically lifting door bottom seal with low profile threshold plate

Glass sliding door
- Glazing in sliding doors to be toughened glass min. 5mm
- Aluminium frame
- No requirement to screen the door if the two above criteria are met

Decking
- 136 x 25mm Spotted Gum (bushfire-resisting timber) with 3mm gaps when installed

FIRST FLOOR BUSHFIRE PROTECTION PLAN
scale 1:100

External walls
- Cement sheet cladding, 16mm thick
- - 75mm thick aerated concrete
- Eaves linings, fascias and gables
- Gables lined externally with 9mm thick cement sheet based non-combustible cladding
- Eaves penetrations sealed to prevent any gaps greater than 3mm using non-combustible sealant
- Eaves and gable vents fitted with aluminium ember guards with maximum aperture of 2mm
- Proprietary plastic joining strips to eaves

BUSHFIRE RELATED NOTES (BAL-19)
To comply with Section 6 of AS3959-2009. Including, but not limited to the following:

Joints
All areas in the external surface material of walls shall be covered, sealed, overlapped, backed or butt-jointed to prevent gaps greater than 3mm.

Vents and Weepholes
Vents and weepholes in external walls shall be screened with aluminium mesh with a maximum aperture of 2mm, except where the vents and weepholes have an aperture less than 3mm.

Windows / Glazing
Window frame and supporting frame shall be powdercoated aluminium with toughened glass minimum 5mm thickness. Openable portions of windows to be screened internally or externally with screens as described below.

Screens for Windows
Aluminium screens within powdercoated aluminum frames must have a maximum aperture of 2mm. Gaps between the perimeter of the screen assembly and the window frame shall not exceed 3mm.

Roof
Roof sheeting to be colorbond (ie. non-combustible). The roof / wall junction shall be sealed, to prevent openings greater than 3mm, by the use of fascia and eaves lining.

Roof ventilation openings, such as gable and roof vents, shall be fitted with aluminium ember guards with a maximum aperture of 2mm.

Sheet roof to be fully sarked. The sarking shall:
- a) be located on top of the roof framing, except that the roof batten may be fixed above the sarking;
- b) cover the entire roof area including hips - with exception of ridges which should be vented to avoid condensation (see approved BSOL details within 'Condensation in Buildings' Tasmanian Designer's Guide);
- c) extend into gutters and valleys.

Any gaps greater than 3mm (such as under corrugations or ribs of sheet roofing and between roof components) sealed at the fascia or wall line and at valleys, hips and ridges by -
(i) aluminium mesh with maximum aperture of 2mm; or
(ii) mineral wool; or
(iii) other non-combustible material; or
(iv) a combination of any of the above items.

Roof Penetrations
Roof penetrations, including roof ventilators, roof-mounted evaporative cooler units, aerials, vent pipes and supports for solar collectors shall be adequately sealed at the roof to prevent gaps greater than 3mm. The material used for sealing shall be non-combustible.

Openings in roof ventilators or vent pipes shall be fitted with aluminium ember guards with a maximum aperture of 2mm.

Evaporative cooling units (fitted to the roof) to be fitted with non-combustible butterfly closers as close as practicable to the roof level, or the unit shall be fitted with non-combustible covers with aluminium mesh or perforated sheet with a maximum aperture of 2mm.

Additional information required for a Building Application:
1. BAL Assessment / Report by an Accredited Bushfire Assessor.
2. Bushfire Hazard Management Plan prepared by an Accredited Bushfire Assessor.
Access and Water to comply with 'BCA Tas 3.7.4.1 Vehicular Access' and 'BCA Tas 3.7.4.2 Water Supply' and shall be shown and specified within the above documents.

For current information and further details on the above, refer to Department of Justice website:

Access and Water
1. BAL Assessment / Report by an Accredited Bushfire Assessor.
2. Bushfire Hazard Management Plan prepared by an Accredited Bushfire Assessor.
Access and Water to comply with 'BCA Tas 3.7.4.1 Vehicular Access' and 'BCA Tas 3.7.4.2 Water Supply' and shall be shown and specified within the above documents.

For current information and further details on the above, refer to Department of Justice website:

Specialist role
- Accredited Practitioner: Name
- Accredited Practitioner: Address
- Accredited Practitioner: Phone number
- Accredited Practitioner: Tasmanian Government

Owner / Client:
Consumer Building & Occupational Services
Project:
Class 1a (Two Storey) Example Street, TASMANIA

Drawing Title: First Floor Bushfire Protection Plan
Date: 2/11/2016
Status: INFORMATION
Scale @ A3: 1:100
Drawing No.: A25 (25 of 25)